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esters. Access to substituted boron analogues of b-proline

and 3-hydroxypyrrolidines
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Abstract—3-Boronic esters-substituted pyrrolidines were prepared via 1,3-dipolar cycloadditions of azomethine ylides to alkenyl
boronates. Hydrolysis gave boron analogues of substituted b-prolines, while treatment with trimethylamine oxide afforded the
corresponding pyrrolidin-3-ols.
� 2004 Elsevier Ltd. All rights reserved.
Boronic acid-based enzyme inhibition has emerged three
decades ago with the discovery of good inhibitors of
chymotrypsin.1 Since these pioneering works, significant
advances have been obtained in this field, mainly as
regards inhibition of thrombin,2 proteasome3 and
dipeptidyl-peptidase IV.4 Because boronic acids easily
interconvert between the neutral sp2 (trigonal planar
substituted) and the anionic sp3 (tetrahedral substituted)
hybridization states, inhibition of proteases and other
hydrolytic enzymes has been based on a close structural
similarity between a tetrahedral boronate fragment and
the tetrahedral intermediate in the enzymatic sequence.5

Boron-containing amino acid derivatives have been also
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examined as potential agents for treatment of cancer in
boron neutron capture therapy (BNCT) strategy.6 If
most of these compounds possess an a-aminoboronic
acid moiety, other boron derivatives have also recently
attracted attention due to their b-lactamase, arginase or
c-glutamyltranspeptidase activities.7 In the course of our
ongoing programme related to the synthesis of bioactive
organoboranes,8 we here report an efficient route to
substituted boron analogues of b-proline9;10 via 1,3-
dipolar cycloadditions of azomethine ylides 2 to alkenyl
boronates 1. Heterocyclic cycloadducts 3 are also good
precursors of the corresponding pyrrolidin-3-ols by
treatment with triethylamine oxide (Scheme 1).
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Recently, several groups have examined the reactivity of
various 1,3-dipoles, as diazoalcanes,11 nitrones12 and
nitrile oxides,13 towards alkenyl boronic esters. In con-
tinuation of our efforts in this area, we have investigated
the hitherto unreported [3+2] cycloadditions of azo-
methines ylides 2 to this class of dipolarophiles. We first
selected activated boronate 1a (R1 ¼CO2Me, R2 ¼H),
prepared by hydroboration of methyl propiolate,14 and
explored various methods of azomethine ylide genera-
tion. Treatment of benzylideneimine of methylglycinate
with Et3N in the presence of LiBr15 or heating a mixture
of formaldehyde and sarcosine16 afforded the expected
cycloadducts as single diastereoisomers and good yields.
In our hands, despite several attempts, the use of
N-trimethylsilylmethyl N-butyloxymethyl benzylamine
in the presence of trifluoroacetic acid as dipole precur-
sor17 was unsuccessful (Scheme 2). The structures of 3a
and 4 were assigned on the basis of their 1H and 13C
NMR spectra by comparison with similar reported
pyrrolidines.18;19 The regiochemistry (2,4-dicarboxylate
structure) and the 4,5-cis configuration of 4 were con-
firmed by the shielding of the 4-CO2CH3 by the adjacent
5-phenyl group. Furthermore, the values of coupling
constants JH2–H3

¼ 9:5Hz, JH3–H4
¼ 8:3Hz and

JH4–H5
¼ 8:3Hz are also very close to those measured

when methyl crotonate or cinnamate were used as
dipolarophile instead 1a, that is in agreement with an
1aMeO2C
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Table 1. Synthesis of 3-boronate pyrrolidines 3

Entry Boronate R1

1 3a CO2Me

2 3b CO2Me

3 3c CO2Me

4 3d H

5 3e Ph

6 3f TolSO2

7 3g TolSO2

8 3h TolSO2

9 3i PhS

10 3j PhSO

11 3k PhCH(Me)NHCO

aYield of isolated product after purification.
bMixture of regio- and stereoisomers.
c Formation of a pyrroline derivative by loss of phenylsulfinic acid.
dMixture of diastereoisomers (1/1).
endo cycloadduct of the syn form of N-lithiated
azomethine ylide.20

Following this initial study, we then turned our atten-
tion to other alkenylboronic esters 1b–1h with different
electronic properties. These organoboranes were pre-
pared by borylation of vinylmagnesium bromide (R1,
R2 ¼H, 1b),21 hydroboration of an alkyne (R1 ¼Ph,
R2 ¼H, 1c and R1 ¼PhS, R2 ¼H, 1f),14 halosulfonyl-
ation–dehydrohalogenation reactions (R1 ¼TolSO2,
R2 ¼H, 1d and R1 ¼TolSO2, R

2 ¼Me, 1e)22 or func-
tional modification of 1f and 1a (R1 ¼PhSO, R2 ¼H, 1g
and R1 ¼CONHCH(CH3)Ph, R2 ¼H, 1h).14 We se-
lected the decarboxylative route to generate nonstabi-
lized azomethine ylides 2 from formaldehyde and
N-methyl-, N-benzylglycine or proline (Scheme 3).23

As outlined in Table 1, the reaction proceeded readily
with satisfactory yields with alkenyl boronic esters
possessing an electron-withdrawing group as ester, sul-
fone or amide (entries 1–3, 6–8 and 11). The presence of
this activating group is essential since no adduct was
detected with the monosubstituted olefin 1b (R1 ¼H)
and styrylboronate 1c (R1 ¼Ph) (entries 4 and 5). The
boronate 1f, with an electron-donating substituent
(R1 ¼ SPh), failed to react (entry 9), while the sulfoxide
1g (R1 ¼ SOPh) was completely consumed. However,
the expected cycloadduct underwent an elimination
reaction of phenylsulfinic acid to afford a pyrroline
derivative. As previously observed in Diels–Alder reac-
tion24 and radical addition,25 the boronate group pro-
vides little if any of the activation of the double bond
towards azomethine cycloaddition. In the case of alk-
R2 R3, R4 Yield (%)a

H H, Me 79

H H, PhCH2 85

H (CH2)3 66b
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enes 1a and 1d, the reactivity is similar to the methyl-
acrylate or phenylvinyl sulfone. It is also worthy to note
that the cycloadditions of azomethine ylide 2
(R3 ¼R5 ¼H, R4 ¼Me) with optically active alkenyl
boronic esters 1a0 and 1d0, respectively, prepared by
transesterification of 1a and 1d with (+)-pinanediol,
afforded the corresponding cycloadducts with no dia-
stereoselectivity (1/1).

Pyrrolidines boronates were easily converted to the
corresponding boronic acids 5 in a mild way by
transesterification with phenylboronic acid according to
the method of Coutts and co-workers (Scheme 4).26–28

Alternately, since the NH derivative of aminoboronate
are required to synthesize boropeptides by coupling
reactions with protected amino acids,29 we first
attempted the direct hydrogenolysis of 3b, selected as an
example, in the presence of Pd/C.30 Unfortunately, only
mixtures of inseparable compounds were then obtained.
By contrast, when the cleavage of the C–N bond was
carried out in the presence of Boc2O and Pd(OH)2 as
catalyst, the corresponding carbamate 3l was obtained
in a 75% yield.31 Treatment with HCl in EtOAc afforded
the hydrochloride 3m in a 86% yield.32

Moreover, the versatility of the organoboranes creates
the potential to prepare functionalized pyrrolidines from
cycloadducts 3.33 In this preliminary study, we only
examined the oxidative replacement of the carbon–
boron bond by a carbon–oxygen bond. In our hands, all
attempts to achieve this transformation with hydrogen
peroxide in the presence of sodium hydroxide or a
phosphate buffer were unsuccessful. We were delighted
to find that treatment with triethylamine oxide34 in
refluxing THF afforded the pyrrolidin-3-ol in good
yields after purification by column chromatography
(Scheme 5).35

In conclusion, we have developed a novel and practical
method for the preparation of 3-boronic esters-substi-
tuted pyrrolidines, which are convenient precursors of
the corresponding pyrrolidin-3-ols or b-proline ana-
logues. Further studies including the development of an
N N

R1 B R1 B(OH)2

R4 R4

PhB(OH)2

Me

Me
PhCH2CO2Me

CO2Me

N N

MeO2C B MeO2C B

Boc

Pd(OH)2

Ph

O
O

O
O

Boc2O, MeOH N
H

MeO2C B O
O

O
O

, HCl
HCl

AcOEt

5a-b,5f3a-b, 3f

ether/water
Yield (%) 

65
83
70

Compound
5a
5b
5f TolSO2

3l3b 3m
75% 86%

R1 R4

Scheme 4.
asymmetric variation using chiral azomethine ylide and
the incorporation of the corresponding b-aminoboronic
acids in peptidic chains are currently under investiga-
tion.
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